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Aeroelastic Sensitivity Analyses for Flutter Speed
and Gust Response

L. Balis Crema* and F. Mastroddi’
University of Rome “La Sapienza,” 00184 Rome, Italy

and

G. Coppotellit
Centro Italiano Ricerche Aerospaziale, 81043 Capua (CE), Italy

Two methods for the aeroelastic eigensensitivity analysis and the sensitivity analysis of an aeroelastic discrete-
gust response have been developed. Finite state modeling of the unsteady aerodynamics allows one to determine
explicitly the aeroelastic sensitivity with respect to a structural design variable and the aeroelastic behavior with
respect to other design variables such as fuel weight, wing stiffness, and engine location. An analytical method
based on the matched filter theory has been developed that allows one to estimate the sensitivity, with respect to
the same design variable, of the maximum peak reached by the gust response due to a discrete gust. This approach
allows one to evaluate the maximum value of the response corresponding to a discrete-gust input once the energy
level of the input has been established. The sensitivity of this maximum value with respect to an aeroelastic-design
variable can be evaluated too. The structural and aerodynamic contributions to the sensitivity have been separately
identified following several levels of approximation. Numerical results, in the case of an ultrahigh capacity aircraft
wing, are presented. Because of the large flexibility of the wing, the aeroelastic behavior has been included in
the stability margin estimate and in the gust response. The application limits of the sensitivity approximations are
discussed. The proposed approach, which uses structural and aerodynamic data by standard codes, could be useful
in the preliminary design to evaluate and preestimate the aeroelastic performances.

Nomenclature
A,B = state-space coefficient matrices
a = modal acceleration vector
b = semichord reference length
C, = damping equivalent matrix
cp = vector of the pressure coefficients
E(p) = aerodynamic matrix
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= partial aerodynamic matrices

= aerodynamic-gustvector

= energy associated to the (time-limited) signal
x(1)

= frequency, /27

= generalized aerodynamic force vector

= frequency-responsevector of a single input
multiple output (SIMO) system, with mth entry
H, (o)

= impulse-response vector of a SIMO system,
with mth entry h,, ()

= identity matrix

= imaginary part

= stiffness equivalent matrix

= reduced frequency, Zm(p) = o/ U,

= output-load vector

= reference length

= mass equivalent matrix

= Mach number

= number of modes used in the analysis

= complex reduced frequency, s€/ U,

= Lagrangian-variablevector

qp = dynamic pressure, 0w U2 /2

r = aerodynamic state-space vector

S = body surface

s = Laplace variable

t = aerodynamic force per unit area

U = flight speed

u™, ym = right and left nth eigenvectors

w = gustinput

x = state-space vector

x(m = SIMO system input matched with
the mth output entry

y = output vector for a SIMO system

yim = nth entry of the output vector obtained
matching the mth output entry

a = structural design variable

Q = density of the undisturbed air

> %

nth mode shape function

normalwash vector

modal load contribution to the output load /
due to mode shape ¢™

natural angular frequency diagonal matrix
angular frequency, Zm(s)

partial derivative with respect to the design
variable o

Laplace-transformoperator

complex conjugate operator

quantity modified by a design-variable
variation

Introduction

HE intereston the ultrahigh capacity aircraft (UHCA) is due to
the possible significant reduction in the direct operative costs
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that may be achieved; the drawbacks are the increase of weight and
the flexibility of the wing. As a consequence, the static and dy-
namic aeroelastic effects become more important.! = The stiffness
reduction, the mass increase, and the engine location lead to a de-
crease of the natural frequencies and consequently may reduce the
flutter speed. The influence of the wing structure parameters such
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as stiffness, mass distribution, and engine locations has to be taken
into account to evaluate the aeroelastic performances. The use of
aeroelastic sensitivities with respect to either structural* or generic
configuration parameters is essential in the aircraft preliminary de-
sign when aeroelastic constraints are considered.>*

The influence of structural and aerodynamic discretization on
the aeroelastic stability analysis has been carried out by Striz and
Venkayya,’ where the interaction between structural and aerody-
namic discretization has been investigated. There are numerous in-
vestigations on numerical methods for evaluating aeroelastic sensi-
tivities in the technical literature #° A significant improvement on
the sensitivity evaluation problem was obtained by using finite state
aerodynamics'®~!? for a state-space approximation of the unsteady
aerodynamic models used in aeroelasticity!>~!> An investigation
on the influence of the structural modification of aeroelastic sen-
sitivities was carried out by Balis Crema et al.% and the portion of
the generalized aerodynamic force (GAF) matrix that is structure-
dependentwas explicitly identified. In the same reference, the mod-
ifications in the lifting-surface geometry were not considered. In
this paper the formulation presented by Balis Crema et al.% for the
eigensensitivity problem is used for the aeroelastic sensitivity anal-
ysis of a UHCA wing. The body shape variations due to the engine
position or diameter magnitude are considered as well.

Another critical issue could be the capability of such an aircraft
to satisfy the requirements prescribed by the appropriate authorities
regarding gustresponse.In Refs. 16 and 17, the results of the general
theory of matched-filter input introduced by Papoulis'® have been
applied for the evaluation of the maximum peak of the continuous-
gust response. The same theoretical tool has been used by Balis
Crema et al.'?% to obtain simple formulas for the sensitivity of
discrete-gustresponse with respect to design variables.

In the present paper the limits of applicability in the mathemati-
cal model-approximationusing these sensitivity formulashavebeen
pointed out. Therefore, this paper may be considered an overview
and a developmentof the work of Balis Crema et al.*!* where these
issues were not highlighted. In the next section, the basic aeroelas-
tic model and finite state aerodynamics formulation is presented.
Then the aeroelastic eigensensitivity formulation is discussed and
the maximum peak of the gust response and its sensitivity analysis
is presented. Finally, the different approaches are discussed with a
UHCA wing as the configuration of interest.

Aeroelastic Model and Finite State Aerodynamics
Consider an aeroelastic system described in terms of the ampli-
tudes ¢, (1) (n =1, ..., N) of the natural modes of vibration ¢
that are here assumed to be normalized, to have the generalized
masses equal one. The corresponding Lagrange equations of mo-
tion, neglecting structural damping, are given by

d’q
— + g = 1
ar 9=4pf (1
where the componentsof f are the generalizedaerodynamic forces
associated with the nth mode d>(") (n=1,...,N)as
b fr = ‘ﬁ(s t-vds @

where ¢ is the aerodynamic force per unit area acting on S. In the
following, we assume that ¢ depends linearly on the Lagrangian co-
ordinatesq,(t); specifically, we limit ourselvesto potential subsonic
or supersonic flows. The modeling of free-wake effects, viscous ef-
fects, particularly important for the control surfaces, and/or of tran-
sonic effects falls beyond the scope of the present paper. Hence, the
Laplace transform of the generalized force vector can be expressed
as

F(s) =E(sb/ Uy) §(s) + E,, (sb] U)W (s) 3)

where E and E,, are functionsof s and U, only throughthe complex
reduced frequency p :=sb/ U . Note that E may be obtained ana-
lytically for some simple cases, for example, classic Theodorsen

incompressible two-dimensional aerodynamic theory; otherwise,
E(p) andE,, (p) are evaluatednumerically, for instance, by doublet-
lattice' or panel methods.2! More precisely, the algorithm for the
evaluation of such a matrices is typically available only along the
imaginary axis: E(p) is then the analytic continuation of E(ik).

In the case of compressible potential flow,?! the N X N GAF
matrix can be exactly decomposed into three contributions’:

E(p) =Ec(p)Es(p)EA(p) “)

as specified as follows.

1) E,(p) is an N, X N matrix that transforms the vector of the
Laplace transform of the generalized coordinates § into the normal
wash vector ¥ of dimensions N, (number of the aerodynamiccontrol
points on the wing surface), that represents the Laplace transform
of the component of the fluid velocity on the normal to the body
surface (these quantities are typically the input for the unsteady
aerodynamics).

2) Egz(p) is an N, X N, matrix that transforms the vector of the
Laplace transform of the normalwash ¥ to the vector ¢, of the
Laplace transformof the pressure coefficients evaluatedin N, points
onthe body surface (note that this portionof the GAF matrix depends
only on the aircraft geometry and on the flight conditions).

3) Ec(p) is an N X N, matrix that transforms the vector &, into
the vector f.

Note that only Ec(p) and E,(p) are explicitly dependent on
the assumed modes: Under certain conditions the influence of the
structural variation on these matrices is negligible, and this issue
has been pointed out in most of the reported results. Specifically,
the GAF matrix E, including the structural modifications, is given
by [see Eq. (4)]

E =ECEBEA =E(;EBEA + AE(;EBEA

+EE3AE, + AE.E;AE, (5)

As shown in Ref. 6, in Eq. (5) the second and the third term on
the right-hand side are of order 8, where & = max.,[Ad " (x)]
(with A denoting the variation during the design process) and the
fourth of order &. It is known that, in the structural eigenproblems,
the eigenvalues are typically more sensitive than the corresponding
eigenvectors?* Thus, the lastthree terms in Eq. (5) are of higher order
withrespectto (A w) and (A )2, where (A ) denotes the maximum
eigenfrequency variation in the design. Nevertheless, this result is
true for a natural frequency variation and not, for example, for an
aerodynamicmodification, as will be shown. Similar comments also
hold for the aerodynamic gust-vector matrix.

Next, to perform the flutter-eigensensitivity analysis in the next
section in terms of state-space variables, let us introduce the finite
state approximation for the aerodynamics. The finite state aerody-
namic approximation for the GAF matrix introduced by Morino
etal.!! yields

E(p)g= [p’E, + pE, + E, + (pI —P)"'Rp]q (©6)

Considering Egs. (1) and (3) and the finite state aerodynamic ap-
proximation given by Eq. (6), the Lagrangian equations of motion
in the Laplace domain become [with E,,(p) =0]

G + G = qp{Ex(b* | UL)s® + E (b Us)s
+Eo + [I(b/ Us)s — PI"'R(b/ Uy )s ) g (7)
Equation (7) can be rewritten as
[M.s* + C.s +K.]g+F7=0
7 = —qplI(b/Us)s — PI"'PRG (8)

(where M, :=1 — qpE,b*/ U2, C,:=—qpE,b/ Uy, and K, :=
(93 —gqpEy — qpR) or, in state-variable form,

B(Uy, a)x =AUy, Q)x )
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where x” :={q”|¢" |r" }, and

0 I 0
AUy, a) = -K, -C, -1
—qp(Uu/)PR 0 (Uy/b)P
I 0 0
BUs,0)=|0 M, 0 (10)
0 0 I

where a is a design variable (either in the geometrical, stiffness, or
mass characteristics) that affects the stiffness matrix, the mass ma-
trix and/or the GAF matrix (when o =0, no structural modifications
are considered). Consequently, also the approximating matrices E»,
E,,E,, P, and R in Eq. (6) may be modified by variations of such a
parameter. Note also that one could consider a vector of structural-
design variables {a;, o, . ..}, but this does not change the following
considerationsand results.

Aeroelastic Flutter Sensitivities
A method for an analytical evaluation of the aeroelastic sensitiv-
ities is outlined in this section. Let us consider the eigenproblem
associated with Eq. (9):

[A(Uoo 5 (Z) - lnB(Uoo 5 a)]u(n) =0 (11)

wheren =1, 2, ..., 3N.Indeed, the precedingeigenproblemcan be
solved for arbitrary values of the parameters U, and c.. Premulti-
pling Eq. (11) by the transpose of the nth left eigenvectorv(")T [such
asv™’ u™ = 1], one has for the genericnth eigenvalue (eigenvector)

v [A(Us , @) = 2,B(Us, o)™ =0 (12)

To obtain the derivative of the flutter speed and the flutter frequency
with respect to a(U, and e A5 ), let us differentiate Eq. (12) with
respect to o (for the sake of simplicity, we shall not indicate in the
following the dependenceon U,, and o):

v’ ou™ oA
Y A= A,Blu®™ + v A - 4,BE— [ Ly,
oa oa ou
0A oB oB da, -
+— -4, |—=Uy+—| ——B|u'"™ =0 (13)
oa oUu oa do
ReorderingEq. (13) with respectto theunknowns U ,, and 4, , yields
' oA A o8 uU , — v Bu™ ),
ou  "oU :
=y (24 2B (14)
oa oa

In the flutter condition, for all of the values of a, one has a charac-
teristic flutter velocity U, . (a) for which the correspondingcritical
eigenvalues Ap(a) has Re[Ar(a)] =0. When Eq. (14) is written
correspondingly to the flutter condition (4, = j o, u™ =ur, and
vy =v), one has

r| A . OB T
Vi J upU, — jvBuror,,

ou U
A B
— | = _ . — 15
vF(aa J@Faa)up (15)

Equation (15) can be rewritten as
aU, +bor, =c (16)

(with trivial definitions for the coefficients a, b, and c¢), that is,
considering the real and the imaginary parts,

arU, + broyp, = cg, aUgy +bjop, =c¢ a7

The precedinglinear system gives the two flutter derivatives with
respectto the structural design variable o. Note that to solve the pre-
ceding eigensensitivityproblem, one needs the derivative0A/0U,
0B/0Uy , 0A/da, and 0B/0 a: Considering Eq. (10), one obtains

A 0 0 0
T QU (Ey+R) 30E:b 0
—%Q(U; /b)PR 0 P/b
3B 0 0 0
=10 0 O0|=
30 0 (18)
0 0 0
0 0 0
0A
Ta =| 49pEoot+ qpR,— Q?a qp(Us ID)E; 4 0
—qp(Us Ib)(P R + PR,) 0 (Ux Ib)P
B 0 0 0
% =10 —QD(bz/Uozo)Ez,a 0 (19)
0 0 0

Note that the sensitive matrices E¢ 4, E 4, P, and R , are higher
order terms with respect to o, because they are all dependent on
the modal shapes in the manner discussed earlier, if one does not
consider shape variations. In this case one can use the following
simplified expressions:

0A 0
—_ = _g}ix
0

oB
— =0 20
Ja Ja (20)

o o O
o o O

Matched-Filter Theory (MFT) vs Gust-Response
Sensitivity Analysis

The matched-filter theory (MFT), was originally introduced'® to
obtain, for a given input x(¢) with a prescribed energy level (i.e.,
an integral constraint), a suitable system with impulsive response
h(t) such that the corresponding output has a maximum for any
input x(¢) with the same energy as x™ (). This theory has been
applied here for a prescribed aeroelastic system (then, in the inverse
meaning with respect to the original one) by Pototzky et al.!® and
Scottetal.!” fora continuousgustanalysis. Indeed, in the acroelastic
gust-response problem the theory may offer an input that results in
an output with a maximum at the time #, that is also a maximum
with respect to other input signals with the same energy.

In this section some essential remarks of the theory will be out-
lined. Let us consider an aeroelastic system with single input mul-
tiple output, for example, an airplane undergoing a gust input. Let
x(t) be the input, y(¢) the output vector, and h(t) the impulsive-
response vector. The MFT result is that the input matched to the
mth output is

x"(t) = ha(ty = 1)/ x 1)
that is, in frequency domain
xm = ane_i“’"’ [k 22)

where « is a constant given by
K =\/ ehm /6/\,(m) (23)

where
+00
2 om* 49

+00
e.m = X (¢ th]
) j_w () o

—0

is the energy associated to the matched input x™ and e,,, is the
energy associated to the mth entry h,,(¢) of the impulse-response
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vector. Let us indicate the corresponding output with y™. The
word matched has to be understood in the sense that such an input
x(r) yields a value at time #, that is maximum in two respects'’:
1) maximum with respect to the time for the function y™(r), thatis,
the mth entry of the output vector y* and 2) maximum with respect
to all of the output y,, (#) correspondingto input with the same signal
energy e, . The validity of these statements is demonstratedin the
Appendix, where it is also shown that the maximum with respectto
the time of time response to the input given by Eq. (21) is

+o00
o, = J_\/ =] e (24)
Equation (24) is the equation used to express the maximum of the
response (in the meaning specified earlier) on the basis of the knowl-
edge of 1) the energy of the input signal, that is, e ), and 2) the
characteristics of the systems, that is, the transfer function entry
H, ().

In this section the application of this result to an aeroelastic gust-
response system will be presented to estimate either the maximum
output of the response (for a given input energy) or its sensitivities
with respect to a design variable. Aeroelastic gust-response can be
described in modal coordinates ¢ and in the frequency domain by
[see Egs. (1-3)]

[-&’I + & - gpE(w)]g =E, (o)W (25)
Two different outputs are considered for the aeroelastic gust-
response system: 1) the plunge rigid body acceleration (an outputof
interest either for verifing the international regulations and require-
ments) and 2) the structural dynamic loads (of interest for the wing
design). If one considersas output the modal accelerationa = — g,
the transfer function vector H, () is given by [Eq. (25)]
H,(0) = o[-l + @ — gpE(0)] E (o)  (26)
Then, if the firstentry @, of the output vectora representsthe plunge
rigid-body acceleration, the maximum value of such as acceleration
for a given energy input

+0o0
e, =] w(t)?dt

is obtained by Eq. (24)

1 +00
afnlr?r = ew\/z—j H, H; do 27
ax 7l

where H,, is the first entry of the transfer function vector H, ().
To obtain the structuralsensitivity with respectto a general design
parameter o, Eq. (27) yields

dal) 0H, 0H,
—m = e, ] —H + H, do
oa o oa oa

1 +0o0
47r\/2—j H, H; do (28)
7r —

00

where the sensitivity 9H,, /9 a is given by [see Eq. (26)]

H“ — 2G ﬂ ﬁ — aE( ) G E
aa (CO) CO aa aa qD a ( ) w(w)
— 0*G( )aE“‘i“’) (29)

where G(w) :=[—w?l + ¥ — gE(w)]™" and 0H; /da=(0H,,/
o0a)*. Neglecting those design variables that can modify the aero-

dynamic matrices*®!” (e.g., shape variables or structural parame-
ters affecting the mode shapes), one can assume 0E/0a =0 and
oE, /0o =0.

Similar results can be obtained considering a structural dynamic
load vector! as output vector. These loads can be expressedin terms
of the Lagrangian variables and the modal-load coefficients as (in
frequency domain)

I= Z Y, = (30)

where W is the matrix with columns given by the ¢/ vectors. Then
the corresponding transfer function vector H; () is given by
H (o) = YG(w)E, (w) €20)

Furthermore, the maximum value of such a load for a given input
energy

+0o0
e, =] w(t)?dt

matched with the mth entry of the output is obtained by Eq. (24):

1
lmnm = \/ET\/_

+00
- ] N H,, H} do (32)

Following the same procedureas shown before,a sensitivityanalysis
can be performed yielding

al,, aH 0H}
2 “mmax \/— Lm HZ + HLm L do
oo Ja " oo
1 +0o0
4| — H, H' dw 33
2 j_oo L Lm (33)
where
oH ol Y oE
L = Y6|-w*— + == —¢,— |GE,
Ja Ja Ja Ja
0E, oY
+¥YG6—— + —GE,, (34)
Ja Ja

A similar discussion on roles and contributions of 0E/0a and
oE, /0o can be carried out.

UHCA Wing

Some numericalresults fora UHCA wing are presented. The char-
acteristics are shown in Table 1. The wing shape is shown in Fig. 1,
where a typical aerodynamic mesh considered in the computation
is also depicted. The stiffness characteristicsgiven by the functions
EI(y)and GJ(y) (y is the spanwise space variable) are reported by
Balis Crema et al.'® A finite element model with about 100 degrees
of freedom has been implemented using the MSC/NASTRAN code
(beam finite elements with three-mass, chordwise distribution and
with the fuselage modeled as a concentrated mass at the wing root).
The modal analysis of the structure with fuel, with eigenfrequencies
and mode shape types reported in Table 2, shows that torsional 7',
out-of-plane bending B, in-plane bending B, and coupled bending
torsional B/ T modes are presentin the considered frequency band,
0-12 Hz. For all of the cases under consideration, the presence of
fuelis taken into accountonly for the mass distribution. The second
mode is a B/ T mode that is essentially influenced by the presence
of the engines as apparent from the mode shape (not shown); the
engines are at 13.015 and 22.915 m from the wing root, the nacelle
axis is 2.3 m below the wing lifting surface, and the nacelle leading
edge is approximately 5 m ahead of the wing leading edge. The
nacelle diameteris 3.5 m, and its length is 5 m.
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Table1 UHCA characteristics

Parameters Values
Reference wing surface 745 m?
Mean aerodynamic chord 11.36 m

Wing span 78 m

Aspect ratio 8.166 —
Taper ratio 0217 —
Root chord 16.14m
Tip chord 3.505m
Swept (25% of span) 34 deg
Maximum take off weight 550 ton
Operative empty weight 271.9 ton
Maximum payload 77.6 ton
Maximum fuel weight 216 .8 ton
Structural wing weight 88.47 ton
Fuselage weight 101 ton
Wing tail weight 54.42 ton
Total engine-pylon weight 28 ton

Table2 Dynamic characteristics of the UHCA
wing model®

Frequency, Generalized Mode
Mode Hz masses type
0 0.0 244,330 R
1 0.470 14,131 B
2 1.415 20,491 BI/T
3 2.351 205,794 T
4 3.330 44,053 B/T
5 3.994 41,574 T
6 4.167 21,856 B
7 5.482 68,314 T/B
8 6.162 89,656 B/T
9 8913 27,388 T/B

2R =rigid, B =bending, T = torsion,and B = in-planebending.

N~
NI
£ NN
<« ™ N
3 N
NN
Y
+ — N
g N
: N
i N
~J

28

‘ 39 m

Fig. 1 Aerodynamic mesh for the UHCA wing.

The unsteady aerodynamic loads due to the nacelle elastic mo-
tion (as a ring wing behavior) are the only effects considered here
(the engine trust forces are approximately constant and, hence, do
notinfluence the stability). The flight conditions are the Mach num-
ber M,, =0.8 and the altitude that corresponds to a standard air
density 0 =1.22 kg/m®. The GAF matrix was obtained by using
the doublet-latticemethod, as implemented in the MSC/NASTRAN
code. The aerodynamic mesh considered is, on the wing, 10 panels
chordwise and 20 spanwise, and on the engine nacelle, 10 stream-
wise and 9 panels circumferentially. The number of GAF matrix
evaluations is equal to 16 in a range of the reduced frequency
0 < k < 0.8. The stability analysis exhibited a typical engine nacelle
pitch flutter with a flutter speed Uy =272.82 m/s and a flutter fre-
quency fr =1.20Hz. This aeroelasticscenariohas been considered

a reference design configuration for the sensitivity analyses pre-
sented here.

Next, let us considerthe results of the aeroelastic sensitivity anal-
ysis. In Fig. 2 the flutter speed is depicted as function of three elas-
tic parameters assumed as design variables: bending stiffness E [
with constant torsional stiffness, torsional stiffness GJ with con-
stant bending stiffness, and both torsional and bending stiffness
keeping constant the stiffness ratio. All of these stiffness variations
are global, that is, obtained by keeping the same function struc-
ture with respect to the spanwise direction and multiplying it for
1 —reduction %/100. The results shown in Fig. 2 are obtained by
neglecting the influence of the engine nacelle and considering the
fuel presence (only for mass distribution). In Fig. 2 the markers rep-
resentthe flutter speed values as obtained by an aeroelastic analysis,
whereas the three straight lines are the tangent lines to the curves
correspondingto the symbols. The tangency pointsare, respectively,
1% for the upper curve, 15% for the middle curve, and 20% for the
lower curve; they were obtained by the sensitivity analysispresented
earlier. Note that the strongest flutter-speed decrease correspondsto
the reduction in torsional stiffness. In Fig. 3 the sensitivity to the
fuel mass variationis estimated with and without the engine nacelle.
Furthermore, the tangent lines obtained by the sensitivity analysis
are also depicted.

UNIFORM STIFFNESS VARIATION
300 T T T T T T T T T
GJ reduction ¢
El & GJ reduction with EI/GJ const. +
Elreduction =
estimated sensit. -
estimated sensit, ~~-
estimated sensit. -~

U (mis)

200 1 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Reduction (%)

Fig. 2 Flutter-speed sensitivity to stiffness variations (no nacelles, with
fuel): tangency points x; = 0% (data 0), x, = 15% (data ©), and x, = 20%
(data +).

FUEL VARIATION
300 : I | |
without nacelle ¢
with nacelle +
estimated sensit, ----- |
295 - estimated sensit, -
290 —
285 | |
©
@ O e R
N L |
’ : ¢ Q. roaonre oo -

275 -

265 - q

260 1 1 L 1
1 08 0.6 04 0.2 0
Fuel fraction

Fig. 3 Flutter-speed sensitivity to fuel-mass variation: tangency points
x;=04.
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ENGINE WEIGHT VARIATION
320 T T T T T
without nacelle <
with nacelle
315 - estimated sensit.
estimated sensit.
310 |- b
305 A
@
300 | -
o
@
E  295f L g
3 o
© &
20 & © o ° © 1
285 PR
280 +
275 |+
a70 27
4 5 9 10

7
Engine weight (1000 Kg)

Fig. 4 Flutter-speed sensitivity to engine-mass variation (without
fuel): tangency points x; = 7.5 (1000 kg).

ENGINE WEIGHT VARIATION

200 ' I | | l
without nacelle ¢
with nacelle
estimated sensit.
estimated sensit.
285 | |
280 & ° |
R S P .
.| e G0
N Oue 0. ° °
E| T e

265 1 1 1 1 1

4 5 [} 7 8 9 10
Engine weight (1000 Kg)

Fig. 5 Flutter-speed sensitivity to engine-mass variation (with fuel):

tangency points x; = 5 (1000 kg).

In Figs. 4 and 5 the influence of the engine weight with and
without fuel, respectively, is shown. The aerodynamic influence of
the nacelles seems to lower the flutter speed but, increasing the
total engine weight, a stabilizing influence is apparent in absence
of fuel (Fig. 4). Again, the tangent lines are obtained as shown in
the preceding figures. In Figs. 6 and 7 the influence of the engine
streamwise location with and without fuel, respectively, is consid-
ered. The global effect of the nacelles is the same as in the earlier
cases. The estimates of the flutter derivatives are obtained also in
this case by considering the mass matrix variations and avoiding
the aerodynamicmatrix variations. Similar results were obtained by
Balis Crema et al."” for the influence of the engine vertical position
and the ratio between the nacelle diameter and length D/ L. In both
the cases the flutter speed appeared to be poorly sensitive to these
variations although the calculated sensitivities were quite accurate.

Next, the results of the gust sensitivity analysis are discussed.
Figure 8 shows a discrete (1 — cos) gust input as function of time
together with the corresponding matched input with the same en-
ergy e,, but in such a way as to maximize the acceleration out-
put. The first input is one of those required by the international
authorities > and it corresponds to a maximum vertical gust ve-
locity U, =15 m/s and a gust gradient distance equal to 25 times
the mean chord. Figure 9 depicts the two corresponding outputs as
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with nacelle +
. estimated sensit. -----
° estimated sensit.

U (nvs)

250 1 I 1 -,
3 -2 -1 Q 1 2 3
Displacement (m)

Fig. 6 Flutter-speed sensitivity to streamwise engine position (without
fuel): tangency points x; = 0 m.
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Fig. 7 Flutter-speed sensitivity to streamwise engine position (with
fuel): tangency points x; = 0 m.
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Fig. 8 Energy-equivalent input for the gust response problem maxi-
mizing the acceleration of center of mass.
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Fig. 9 Gust response acceleration to the 1 — cos input, to the energy-
equivalent matched input, and to the theoretically estimated maximum
value.
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Fig. 10 Sensitivity of the maximum of the gust-response acceleration
to the fuel-mass variation: tangency point x; = 0.3.

obtained by MSC/NASTRAN and the value of the maximum peak
as estimated by Eq. (27). Note that this result suggests a simpler
and more conservative tool to test the extreme performances of an
aircraft for a prescribed energy level of the discrete gust. In Fig. 10
the estimated maximum values, as given by Eq. (27), are depicted
as function of the fuel fraction in the wing. The straight line is the
tangent line to the curve corresponding to the symbols. It has been
obtained by using Egs. (28) and (29) without considering the con-
tributions of the derivatives of the aerodynamic quantitiesE and E,,
with respect to the structural modifications. Actually, this approach
corresponds to neglect the second-order mode shape variations® in
the sensitivity analysis. As is shown, the assumed hypothesis seems
to be quite acceptable.

In Fig. 11 the same kind of results are presented. The E/ and GJ
stiffnessesare assumedas design variablesas in Fig. 2. Also, in these
cases the estimates of the sensitivity are quite acceptable. In Fig. 12
the same analysis, but considering as output the dynamic loads [see
Egs. (30) and (31)], is presented. The input is energy equivalent
to (1 — cos) input (the same considered before) and it maximizes
the bending moment at the root of the wing. The results show that
such input gives an output exactly estimated by theory [Eq. (32)].
The same kind of results of Fig. 10 with respect to the same design
parameter has been obtainedin Fig. 13 for the root bending moment.
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Fig. 11 Sensitivity of the maximum of the gust-response acceleration

to the EI stiffness, GJ stiffness, and simultaneous EI-GJ keeping EI/GJ

constant: tangency points x; = 0.1.
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Fig. 12 Gust response of the root bending moment to the 1 — cos in-

put, to the energy-equivalent matched input, and to the theoretically
estimated maximum value.
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Fig. 13 Sensitivity of the root-bending-moment load to the fuel-mass
variation: tangency points x, = 0 and 0.5.
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Fig. 14 Sensitivity of plunge acceleration to the fuel-mass variation:
tangency points x; = 0.4.
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Fig. 15 Sensitivity of plunge acceleration to the nacelle diameter vari-
ation: tangency pointsx; = 0 m.

Two sensitivity evaluations, the sensitivity of the root bending mo-
ment to the fuel mass variation by two tangent lines to the tangency
pointsx, =0and 0.5, are reported. Although the curve is not persis-
tently increasing or decreasing, the approximation of sensitivity as
obtained in point 0.5 by the simplified version of Egs. (30) and (34)
gives satisfactory results. The limits of the approximated version of
these equations have been investigated by the last set of sensitivity
analyses. In Figs. 14 and 15 the various contributions of structural
and aerodynamic variationsare presentedconsideringthe (structural
and aerodynamic) contribution of engines in the wing. In Fig. 14
the sensitivity of plunge acceleration to the fuel mass variation is
shown. In this case it is essential to take into account the full aero-
dynamic variations (i.e., either 9E/d or 0E,, /0 @) to get the right
tangent line to the tangency point x, =0.4. Without 0E,, /0« the
dotted tangent line is obtained, whereas without any aerodynamic
contribution the wrong dashed-dotted tangent line is pointed out.
Finally, in Fig. 15 the sensitivity of plunge acceleration to the na-
celle diameter variation is presented. Again, the right sensitivity is
obtained considering all the aerodynamic contributions.

Conclusions

In the present paper, using the same basic formulation for the
structural dynamics (modal description) and for the unsteady aero-

dynamics (finite state aerodynamics), several models for the aeroe-
lastic sensitivities in the stability and response problems have been
developed. The aim was to improve the accuracy of such derivatives
in the optimization process with respect to a numerical evaluation
via finite differences that lead to a reanalysisin several design vari-
able points. An apparent advantage of this approach on the flutter
stability appears to be the sensitivity evaluationdirectly carried out
on the flutter speed (note that, in standard codes, aeroelasticstability
constraintsare typically assigned by an admissiblerange on the real
part of the critical eigenvalue).

The effects of several structural-designvariables, such as global
mass and stiffness, fuel mass, and the position and dimension of
engines, on the aeroelastic analysis of an UHCA have been in-
vestigated. A low-frequency flutter occurs because of the coupling
between the first bending mode and the second torsional/bending
mode. The presence of fuel and of nacelle airload generally re-
duces the flutter speed; furthermore, the nacelle displacement in
the streamwise direction and the nacelle diameter may considerably
change the flutter speed.

The response analysis performed by MFT allows evaluation of
the maximum output. Thus, one could use this result for constrained
optimization taking into account the requirements of the appropri-
ate authorities on the discrete-gust response. Moreover, MFT and
the finite state aerodynamics were the tools for evaluating analiti-
cally, via system matrix-transfer-function data, the maximum of the
gust response and the aeroelastic sensitivity given a level of input
energy. The results showed that the most significant effects, in the
UHCA wing numerical tests, were due to the fuel mass changes.
The evaluations by simple formulas of the maximum peak value
and its sensitivitiesare based on the knowledge of the system trans-
fer function and the prescribed gust-input energy level. This could
help designers in evaluating the maximum time response directly
in the frequency domain where the aeroelastic model is typically
defined. This result suggests a simpler and more conservative tool
to test the limit behavior of an aircraft given an energy level of a
discrete gust. Furthermore, exact estimates of the sensitivitiesof the
maximum value with respect to design variables have been evalu-
ated considering several levels of the aerodynamic contributionand
the different results have been pointed out.

Appendix: MFT Properties
The time response to the input given by Eq. (21) is

+00
Hmi(m)é’“ut do

1
(m) ) = —
Yo (1) 277:]

—0

I .
= —j H,H*e !~ do (A1)
2|

where the Eq. (22) has been used. As the function ||H,,|| = H,, H}
is a real and even function of w, Eq. (A1) yields

1 +o00
ym(r) = —] H, H} cos[a(t — t)]dw (A2)
TK

0

As the function y(¢) has a maximum at the time 7 =7, equal to

m

1 +00
o= — f H,H’do (A3)
max 2 TK o

Equation (A2) demonstrates that the maximum is reached for t =1,.
To clarify the meaning of the constant x, consider the identities

m

+00 1 +oo
e, =] h'zn(t) dr = Ej H,Hdo

00

K'2 +00
— 2_] )"C‘(m)x‘(m)* do = Klex(m (A4)
T _e



180 BALIS CREMA, MASTRODDI, AND COPPOTELLI

Then, the meaning of the constant x is given by Eq. (23) and, con-
sidering the relationships (A3) and (23), one has

e.m 1 e
N e N B TS
en, 21w _,

Finally, expressing e;,, by Eq. (A4) and considering the definition
of e, , Eq. (A5) can be finally reduced to Eq. (24).

Next, suppose that x(#) is a general input signal with the same
input energy as the matched input x(¢) [i.e., e, = e, ] that pro-
duces the mth output entry y,, (¢). Considering Egs. (22), (A2), and
(23) together with the Schwartz integral inequality, one has for the
output

2
Iy (OIP =] |2 " g ggioti—nlg
m) 277: .
€h, ) () .
X xm do xxda)
e (m 277: .

1 +o00
€hy j i(”1)*i(”1) do
€,.(m) 271' —oo

e, 1[1 ] e
=——|= H,,,H*da) = [y A6
e.m K* [ T _y " [ym"‘*"‘] (46)

I/\

I/\

thatdemonstratesthat the maximum in time reached by the response
given by the matched input is maximum (in absolute-value sense)
with respectto the maximum in time obtained by any other energy-
equivalentinput.
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