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Aeroelastic Sensitivity Analyses for Flutter Speed
and Gust Response

L. Balis Crema¤ and F. Mastroddi†

University of Rome “La Sapienza,” 00184 Rome, Italy
and

G. Coppotelli‡

Centro Italiano Ricerche Aerospaziale, 81043 Capua (CE), Italy

Two methods for the aeroelastic eigensensitivity analysis and the sensitivity analysis of an aeroelastic discrete-
gust response have been developed. Finite state modeling of the unsteady aerodynamics allows one to determine
explicitly the aeroelastic sensitivity with respect to a structural design variable and the aeroelastic behavior with
respect to other design variables such as fuel weight, wing stiffness, and engine location. An analytical method
based on the matched � lter theory has been developed that allows one to estimate the sensitivity, with respect to
the same design variable, of the maximum peak reached by the gust response due to a discrete gust. This approach
allows one to evaluate the maximum value of the response corresponding to a discrete-gust input once the energy
level of the input has been established. The sensitivity of this maximum value with respect to an aeroelastic-design
variable can be evaluated too. The structural and aerodynamiccontributions to the sensitivity have been separately
identi� ed following several levels of approximation.Numerical results, in the case of an ultrahigh capacity aircraft
wing, are presented. Because of the large � exibility of the wing, the aeroelastic behavior has been included in
the stability margin estimate and in the gust response. The application limits of the sensitivity approximationsare
discussed. The proposed approach, which uses structural and aerodynamicdata by standard codes, could be useful
in the preliminary design to evaluate and preestimate the aeroelastic performances.

Nomenclature
A, B = state-space coef� cient matrices
a = modal acceleration vector
b = semichord reference length
Ce = damping equivalent matrix
cp = vector of the pressure coef� cients
E( p) = aerodynamic matrix
EA( p), EB ( p), = partial aerodynamic matrices
EC ( p)
Ew ( p) = aerodynamic-gustvector
ex = energy associated to the (time-limited) signal

x(t)
f = frequency, x /2 p
f = generalized aerodynamic force vector
H( x ) = frequency-responsevector of a single input

multiple output (SIMO) system, with mth entry
Hm( x )

h(t ) = impulse-responsevector of a SIMO system,
with mth entry hm (t)

I = identity matrix
= [ ] = imaginary part
Ke = stiffness equivalent matrix
k = reduced frequency, Im( p) = x /̀ U 1
l = output-load vector
` = reference length
Me = mass equivalent matrix
M 1 = Mach number
N = number of modes used in the analysis
p = complex reduced frequency, s /̀ U 1
q = Lagrangian-variablevector
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qD = dynamic pressure, %1 U 2
1 /2

r = aerodynamic state-space vector
S = body surface
s = Laplace variable
t = aerodynamic force per unit area
U 1 = � ight speed
u(n) , v(n) = right and left nth eigenvectors
w = gust input
x = state-space vector
x (m ) = SIMO system input matched with

the mth output entry
y = output vector for a SIMO system
y(m )

n = nth entry of the output vector obtained
matching the mth output entry

a = structural design variable
%1 = density of the undisturbed air
Á(n) = nth mode shape function
Â = normalwash vector
Ã(n) = modal load contribution to the output load l

due to mode shape Á(n)

X = natural angular frequency diagonal matrix
x = angular frequency,Im(s)
, a = partial derivative with respect to the design

variable a
» = Laplace-transformoperator
¤ = complex conjugate operator
^ = quantity modi� ed by a design-variable

variation

Introduction

T HE intereston the ultrahighcapacityaircraft (UHCA) is due to
the possible signi� cant reduction in the direct operative costs

that may be achieved; the drawbacks are the increase of weight and
the � exibility of the wing. As a consequence, the static and dy-
namic aeroelastic effects become more important.1 ¡ 3 The stiffness
reduction, the mass increase, and the engine location lead to a de-
crease of the natural frequencies and consequently may reduce the
� utter speed. The in� uence of the wing structure parameters such
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as stiffness, mass distribution,and engine locations has to be taken
into account to evaluate the aeroelastic performances. The use of
aeroelastic sensitivities with respect to either structural4 or generic
con� guration parameters is essential in the aircraft preliminary de-
sign when aeroelastic constraints are considered.5,6

The in� uence of structural and aerodynamic discretization on
the aeroelastic stability analysis has been carried out by Striz and
Venkayya,7 where the interaction between structural and aerody-
namic discretizationhas been investigated.There are numerous in-
vestigationson numerical methods for evaluatingaeroelastic sensi-
tivities in the technical literature.8,9 A signi� cant improvement on
the sensitivityevaluationproblem was obtained by using � nite state
aerodynamics10 ¡ 12 for a state-space approximation of the unsteady
aerodynamic models used in aeroelasticity.13 ¡ 15 An investigation
on the in� uence of the structural modi� cation of aeroelastic sen-
sitivities was carried out by Balis Crema et al.6 and the portion of
the generalized aerodynamic force (GAF) matrix that is structure-
dependentwas explicitly identi� ed. In the same reference, the mod-
i� cations in the lifting-surface geometry were not considered. In
this paper the formulation presented by Balis Crema et al.6 for the
eigensensitivityproblem is used for the aeroelastic sensitivity anal-
ysis of a UHCA wing. The body shape variationsdue to the engine
position or diameter magnitude are considered as well.

Another critical issue could be the capability of such an aircraft
to satisfy the requirementsprescribedby the appropriateauthorities
regardinggust response.In Refs. 16 and 17, the resultsof the general
theory of matched-� lter input introduced by Papoulis18 have been
applied for the evaluation of the maximum peak of the continuous-
gust response. The same theoretical tool has been used by Balis
Crema et al.19,20 to obtain simple formulas for the sensitivity of
discrete-gust response with respect to design variables.

In the present paper the limits of applicability in the mathemati-
cal model–approximationusing thesesensitivityformulashavebeen
pointed out. Therefore, this paper may be considered an overview
and a developmentof the work of Balis Crema et al.3,19 where these
issues were not highlighted. In the next section, the basic aeroelas-
tic model and � nite state aerodynamics formulation is presented.
Then the aeroelastic eigensensitivity formulation is discussed and
the maximum peak of the gust response and its sensitivity analysis
is presented. Finally, the different approaches are discussed with a
UHCA wing as the con� guration of interest.

Aeroelastic Model and Finite State Aerodynamics
Consider an aeroelastic system described in terms of the ampli-

tudes qn (t ) (n =1, . . . , N ) of the natural modes of vibration Á(n)

that are here assumed to be normalized, to have the generalized
masses equal one. The corresponding Lagrange equations of mo-
tion, neglecting structural damping, are given by

d2q
dt2

+ X 2q = qD f (1)

where the componentsof f are the generalizedaerodynamicforces
associated with the nth mode Á(n) (n = 1, . . . , N ) as

qD fn =
S

t ¢ Á(n) dS (2)

where t is the aerodynamic force per unit area acting on S. In the
following,we assume that t depends linearly on the Lagrangian co-
ordinatesqn (t ); speci� cally,we limit ourselvesto potentialsubsonic
or supersonic � ows. The modeling of free-wake effects, viscous ef-
fects, particularly important for the control surfaces, and/or of tran-
sonic effects falls beyond the scope of the present paper. Hence, the
Laplace transform of the generalized force vector can be expressed
as

f̃ (s) = E(sb/ U 1 ) q̃(s) + Ew (sb/ U 1 )w̃ (s) (3)

where E and Ew are functionsof s and U 1 only throughthe complex
reduced frequency p := sb/ U 1 . Note that E may be obtained ana-
lytically for some simple cases, for example, classic Theodorsen

incompressible two-dimensional aerodynamic theory; otherwise,
E( p) and Ew ( p) are evaluatednumerically,for instance,by doublet-
lattice15 or panel methods.21 More precisely, the algorithm for the
evaluation of such a matrices is typically available only along the
imaginary axis: E( p) is then the analytic continuationof E(ik).

In the case of compressible potential � ow,21 the N £ N GAF
matrix can be exactly decomposed into three contributions6:

E( p) = EC ( p)EB ( p)EA( p) (4)

as speci� ed as follows.
1) EA( p) is an Nb £ N matrix that transforms the vector of the

Laplace transform of the generalized coordinates q̃ into the normal
washvectorẪ of dimensions Nb (numberof theaerodynamiccontrol
points on the wing surface), that represents the Laplace transform
of the component of the � uid velocity on the normal to the body
surface (these quantities are typically the input for the unsteady
aerodynamics).

2) EB ( p) is an Nb £ Nb matrix that transforms the vector of the
Laplace transform of the normalwash Ẫ to the vector c̃p of the
Laplace transformof the pressurecoef� cients evaluatedin Nb points
on thebodysurface(note that thisportionof theGAF matrixdepends
only on the aircraft geometry and on the � ight conditions).

3) EC ( p) is an N £ Nb matrix that transforms the vector c̃p into
the vector f̃ .

Note that only EC ( p) and EA( p) are explicitly dependent on
the assumed modes: Under certain conditions the in� uence of the
structural variation on these matrices is negligible, and this issue
has been pointed out in most of the reported results. Speci� cally,
the GAF matrix Ê, including the structural modi� cations, is given
by [see Eq. (4)]

Ê = ÊC EB ÊA = EC EB EA + D ECEB EA

+ EC EB D EA + D EC EB D EA (5)

As shown in Ref. 6, in Eq. (5) the second and the third term on
the right-hand side are of order d , where d = max(x,n)[D Á(n)(x)]
(with D denoting the variation during the design process) and the
fourth of order d 2. It is known that, in the structural eigenproblems,
the eigenvaluesare typically more sensitive than the corresponding
eigenvectors.4 Thus, the last three terms in Eq. (5) are of higherorder
with respectto ( D x ) and ( D x )2 , where ( D x ) denotes the maximum
eigenfrequency variation in the design. Nevertheless, this result is
true for a natural frequency variation and not, for example, for an
aerodynamicmodi� cation,as will be shown.Similar comments also
hold for the aerodynamic gust-vector matrix.

Next, to perform the � utter-eigensensitivityanalysis in the next
section in terms of state-space variables, let us introduce the � nite
state approximation for the aerodynamics. The � nite state aerody-
namic approximation for the GAF matrix introduced by Morino
et al.11 yields

E( p)q̃ ’ [p2E2 + pE1 + E0 + ( pI ¡ P) ¡ 1Rp]q̃ (6)

Considering Eqs. (1) and (3) and the � nite state aerodynamic ap-
proximation given by Eq. (6), the Lagrangian equations of motion
in the Laplace domain become [with Ew ( p) =0]

s2q̃ + X 2q̃ = qD{E2(b2 /U 2
1 )s2 + E1(b/ U 1 )s

+ E0 + [I(b/ U 1 )s ¡ P] ¡ 1R(b / U 1 )s} q̃ (7)

Equation (7) can be rewritten as

[Mes
2 + Ces + Ke]q̃ + r̃ = 0

r̃ = ¡ qD [I(b /U 1 )s ¡ P] ¡ 1PRq̃ (8)

(where Me := I ¡ qDE2b2 / U 2
1 , Ce := ¡ qD E1b/ U 1 , and Ke :=

X 2 ¡ qDE0 ¡ qDR) or, in state-variable form,

B(U 1 , a ) Çx = A(U 1 , a )x (9)
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where xT := {qT j ÇqT j rT }, and

A(U 1 , a ) = é
ë

0 I 0

¡ Ke ¡ Ce ¡ I

¡ qD(U 1 / b)PR 0 (U 1 /b)P

ù
û

B(U 1 , a ) = é
ë

I 0 0

0 Me 0

0 0 I

ù
û

(10)

where a is a design variable (either in the geometrical, stiffness, or
mass characteristics) that affects the stiffness matrix, the mass ma-
trix and/or the GAF matrix (when a = 0, no structuralmodi� cations
are considered). Consequently,also the approximatingmatrices E2,
E1 , E0, P, and R in Eq. (6) may be modi� ed by variations of such a
parameter. Note also that one could consider a vector of structural-
design variables{a 1, a 2 , . . .}, but this does not change the following
considerationsand results.

Aeroelastic Flutter Sensitivities
A method for an analytical evaluation of the aeroelastic sensitiv-

ities is outlined in this section. Let us consider the eigenproblem
associated with Eq. (9):

[A(U 1 , a ) ¡ k nB(U 1 , a )]u(n) = 0 (11)

where n = 1, 2, . . . , 3N . Indeed, the precedingeigenproblemcan be
solved for arbitrary values of the parameters U 1 and a . Premulti-
pling Eq. (11) by the transposeof the nth left eigenvectorv(n)T [such
as v(n)T

u(n) = 1], one has for the genericnth eigenvalue(eigenvector)

v(n)T
[A(U 1 , a ) ¡ k nB(U 1 , a )]u(n) = 0 (12)

To obtain the derivativeof the � utter speed and the � utter frequency
with respect to a (UF, a and e k F, a ), let us differentiate Eq. (12) with
respect to a (for the sake of simplicity, we shall not indicate in the
following the dependence on U 1 and a ):

@v(n)T

@ a
[A ¡ k nB]u(n) + v(n)T

[A ¡ k nB]
@u(n)

@ a
+ v(n)T [ @A

@U
U, a

+
@A
@ a

¡ k n ( @B
@U

U, a +
@B
@ a ) ¡

d k n

d a
B]u(n) = 0 (13)

ReorderingEq. (13)with respectto theunknownsU, a and k n , a yields

v(n)T [ @A
@U

¡ k n
@B
@U ]u(n)U, a ¡ v(n)T

Bu(n) k n , a

= ¡ v(n)T ( @A
@ a

¡ k n
@B
@ a ) u(n) (14)

In the � utter condition, for all of the values of a , one has a charac-
teristic � utter velocityU 1 F ( a ) for which the correspondingcritical
eigenvalues k F ( a ) has Re[k F ( a )] = 0. When Eq. (14) is written
correspondingly to the � utter condition (k n = j x F , u(n) = uF , and
v(n) = vF ), one has

vT
F[ @A

@U
¡ j x F

@B
@U ]uF U, a ¡ jvT

F BuF x F, a

= ¡ vT
F ( @A

@ a
¡ j x F

@B
@ a ) uF (15)

Equation (15) can be rewritten as

aU, a + b x F, a = c (16)

(with trivial de� nitions for the coef� cients a, b, and c), that is,
considering the real and the imaginary parts,

aRU, a + bR x F, a = cR , a I U, a + b I x F, a = cI (17)

The precedinglinear system gives the two � utter derivativeswith
respect to the structuraldesignvariable a . Note that to solve the pre-
ceding eigensensitivityproblem, one needs the derivative@A/ @U 1 ,
@B/ @U 1 , @A/@ a , and @B/ @ a : Considering Eq. (10), one obtains

@A
@U 1

= é
ë

0 0 0

%U 1 (E0 + R) 1
2 %E1b 0

¡ 3
2 %(U 2

1 / b)PR 0 P/ b

ù
û

@B
@U 1

= é
ë

0 0 0

0 0 0

0 0 0

ù
û

= 0 (18)

@A
@ a

= é
ë

0 0 0

qDE0, a + qDR, a ¡ X 2
, a qD(U 1 /b)E1, a 0

¡ qD(U 1 / b)(P, a R + PR, a ) 0 (U 1 /b)P, a

ù
û

@B
@ a

= é
ë

0 0 0

0 ¡ qD(b2 / U 2
1 )E2, a 0

0 0 0

ù
û

(19)

Note that the sensitive matrices E0, a , E1, a , P, a , and R, a are higher
order terms with respect to a , because they are all dependent on
the modal shapes in the manner discussed earlier, if one does not
consider shape variations. In this case one can use the following
simpli� ed expressions:

@A
@ a

»= é
ë

0 0 0

¡ X 2
, a 0 0

0 0 0

ù
û

,
@B
@ a

»= 0 (20)

Matched-Filter Theory (MFT) vs Gust-Response
Sensitivity Analysis

The matched-� lter theory (MFT), was originally introduced18 to
obtain, for a given input x (m )(t ) with a prescribedenergy level (i.e.,
an integral constraint), a suitable system with impulsive response
h(t ) such that the corresponding output has a maximum for any
input x(t) with the same energy as x (m) (t). This theory has been
applied here for a prescribedaeroelastic system (then, in the inverse
meaning with respect to the original one) by Pototzky et al.16 and
Scott et al.17 for a continuousgust analysis.Indeed, in the aeroelastic
gust-responseproblem the theory may offer an input that results in
an output with a maximum at the time t0 that is also a maximum
with respect to other input signals with the same energy.

In this section some essential remarks of the theory will be out-
lined. Let us consider an aeroelastic system with single input mul-
tiple output, for example, an airplane undergoing a gust input. Let
x(t ) be the input, y(t) the output vector, and h(t ) the impulsive-
response vector. The MFT result is that the input matched to the
mth output is

x (m )(t ) = hm(t0 ¡ t) / j (21)

that is, in frequency domain

x̃ (m) = H ¤
me ¡ i x t0 / j (22)

where j is a constant given by

j = Ï ehm / ex (m) (23)

where

ex (m ) := * + 1

¡ 1
x (m )2

(t ) dt ´ * + 1

¡ 1
x̃ (m) x̃ (m) ¤ d x

2p

is the energy associated to the matched input x (m ) and ehm is the
energy associated to the mth entry hm (t ) of the impulse-response
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vector. Let us indicate the corresponding output with y(m) . The
word matched has to be understood in the sense that such an input
x (m )(t ) yields a value at time t0 that is maximum in two respects19:
1) maximum with respect to the time for the function y(m )

m (t ), that is,
the mth entry of the output vector y(m ) and 2) maximum with respect
to all of the output ym (t) correspondingto inputwith the same signal
energy ex (m) . The validity of these statements is demonstrated in the
Appendix,where it is also shown that the maximum with respect to
the time of time response to the input given by Eq. (21) is

y (m )
mmax

=
p

ex (m) ! 1

2 p * + 1

¡ 1
Hm H ¤

m d x (24)

Equation (24) is the equation used to express the maximum of the
response(in the meaningspeci� ed earlier)on the basis of the knowl-
edge of 1) the energy of the input signal, that is, ex (m ) , and 2) the
characteristics of the systems, that is, the transfer function entry
Hm ( x ).

In this section the applicationof this result to an aeroelasticgust-
response system will be presented to estimate either the maximum
output of the response (for a given input energy) or its sensitivities
with respect to a design variable. Aeroelastic gust-responsecan be
described in modal coordinates q and in the frequency domain by
[see Eqs. (1–3)]

[ ¡ x 2I + X 2 ¡ qDE( x )]q̃ = Ew ( x )w̃ (25)

Two different outputs are considered for the aeroelastic gust-
responsesystem: 1) the plunge rigid body acceleration(an outputof
interest either for veri� ng the international regulations and require-
ments) and 2) the structural dynamic loads (of interest for the wing
design). If one considersas output themodalaccelerationã = ¡ x 2 q̃,
the transfer function vector Ha( x ) is given by [Eq. (25)]

Ha ( x ) = ¡ x 2[ ¡ x 2I + X 2 ¡ qD E( x )] ¡ 1
Ew ( x ) (26)

Then, if the � rst entry ã1 of the outputvector ã representsthe plunge
rigid-bodyacceleration,the maximum value of such as acceleration
for a given energy input

ew = * + 1

¡ 1
w(t )2 dt

is obtained by Eq. (24)

a(1)
mmax

=
p

ew ! 1

2p * + 1

¡ 1
Ha1 H ¤

a1
d x (27)

where Ha1 is the � rst entry of the transfer function vector Ha ( x ).
To obtain the structuralsensitivitywith respect to a generaldesign

parameter a , Eq. (27) yields

@a (1)
mmax

@ a
=

p
ew [ * + 1

¡ 1
( @Ha1

@ a
H ¤

a1
+ Ha1

@H ¤
a1

@ a ) d x /
4 p ! 1

2 p * + 1

¡ 1
Ha1 H ¤

a1
dx ] (28)

where the sensitivity @Ha1 / @ a is given by [see Eq. (26)]

@Ha

@ a
= x 2G( x )[ ¡ x 2 @I

@ a
+

@ X 2

@ a
¡ qD

@E( x )

@ a ]G( x )Ew ( x )

¡ x 2G( x )
@Ew ( x )

@ a
(29)

where G( x ) := [ ¡ x 2I + X 2 ¡ qE( x )] ¡ 1 and @H ¤
a1

/@ a = (@Ha1 /
@ a ) ¤ . Neglecting those design variables that can modify the aero-

dynamic matrices3,6,19 (e.g., shape variables or structural parame-
ters affecting the mode shapes), one can assume @E/@ a =0 and
@Ew / @ a =0.

Similar results can be obtained considering a structural dynamic
load vector l as outputvector. These loads can be expressed in terms
of the Lagrangian variables and the modal-load coef� cients as (in
frequency domain)

l̃ =
N

^
n

Ã(n) q̃n = W q (30)

where W is the matrix with columns given by the Ã(n) vectors.Then
the corresponding transfer function vector HL ( x ) is given by

HL ( x ) = W G( x )Ew ( x ) (31)

Furthermore, the maximum value of such a load for a given input
energy

ew = *
+ 1

¡ 1
w (t )2 dt

matched with the mth entry of the output is obtained by Eq. (24):

lmmax =
p

ew ! 1

2p *
+ 1

¡ 1
HLm H ¤

Lm
d x (32)

Followingthe sameprocedureas shownbefore,a sensitivityanalysis
can be performed yielding

@lmmax

@ a
=

p
ew [ *

+ 1

¡ 1
( @HLm

@ a
H ¤

Lm
+ HLm

@H ¤
Lm

@ a ) dx /
4 p ! 1

2 p *
+ 1

¡ 1
HLm H ¤

Lm
dx ] (33)

where

@HL

@ a
= ¡ W G[ ¡ x 2 @I

@ a
+

@ X 2

@ a
¡ qD

@E
@ a ]GEw

+ W G
@Ew

@ a
+

@ W

@ a
GEw (34)

A similar discussion on roles and contributions of @E/ @ a and
@Ew / @ a can be carried out.

UHCA Wing
Some numericalresultsfor a UHCA wingarepresented.The char-

acteristics are shown in Table 1. The wing shape is shown in Fig. 1,
where a typical aerodynamic mesh considered in the computation
is also depicted. The stiffness characteristicsgiven by the functions
E I (y) and G J (y) (y is the spanwisespacevariable) are reportedby
Balis Crema et al.19 A � nite element model with about 100 degrees
of freedom has been implemented using the MSC/NASTRAN code
(beam � nite elements with three-mass, chordwise distribution and
with the fuselage modeled as a concentratedmass at the wing root).
The modal analysisof the structurewith fuel, with eigenfrequencies
and mode shape types reported in Table 2, shows that torsional T ,
out-of-plane bending B , in-plane bending B̄, and coupled bending
torsional B / T modes are present in the considered frequencyband,
0–12 Hz. For all of the cases under consideration, the presence of
fuel is taken into account only for the mass distribution.The second
mode is a B / T mode that is essentially in� uenced by the presence
of the engines as apparent from the mode shape (not shown); the
engines are at 13.015 and 22.915 m from the wing root, the nacelle
axis is 2.3 m below the wing lifting surface, and the nacelle leading
edge is approximately 5 m ahead of the wing leading edge. The
nacelle diameter is 3.5 m, and its length is 5 m.
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Table 1 UHCA characteristics

Parameters Values

Reference wing surface 745 m2

Mean aerodynamic chord 11.36 m
Wing span 78 m
Aspect ratio 8.166 —
Taper ratio 0.217 —
Root chord 16.14 m
Tip chord 3.505 m
Swept (25% of span) 34 deg
Maximum take off weight 550 ton
Operative empty weight 271.9 ton
Maximum payload 77.6 ton
Maximum fuel weight 216 .8 ton
Structural wing weight 88.47 ton
Fuselage weight 101 ton
Wing tail weight 54.42 ton
Total engine-pylon weight 28 ton

Table 2 Dynamic characteristics of the UHCA
wing modela

Frequency, Generalized Mode
Mode Hz masses type

0 0.0 244,330 R
1 0.470 14,131 B
2 1.415 20,491 B / T
3 2.351 205,794 T
4 3.330 44,053 B / T
5 3.994 41,574 T
6 4.167 21,856 B̄
7 5.482 68,314 T / B
8 6.162 89,656 B / T
9 8.913 27,388 T / B

a R = rigid, B = bending,T = torsion,and B̄ = in-planebending.

Fig. 1 Aerodynamic mesh for the UHCA wing.

The unsteady aerodynamic loads due to the nacelle elastic mo-
tion (as a ring wing behavior) are the only effects considered here
(the engine trust forces are approximately constant and, hence, do
not in� uence the stability). The � ight conditions are the Mach num-
ber M 1 = 0.8 and the altitude that corresponds to a standard air
density %1 =1.22 kg/m3 . The GAF matrix was obtained by using
the doublet-latticemethod, as implemented in the MSC/NASTRAN
code. The aerodynamicmesh considered is, on the wing, 10 panels
chordwise and 20 spanwise, and on the engine nacelle, 10 stream-
wise and 9 panels circumferentially. The number of GAF matrix
evaluations is equal to 16 in a range of the reduced frequency
0 < k < 0.8. The stability analysis exhibiteda typical engine nacelle
pitch � utter with a � utter speed UF =272.82 m/s and a � utter fre-
quency fF =1.20 Hz. This aeroelasticscenariohas been considered

a reference design con� guration for the sensitivity analyses pre-
sented here.

Next, let us considerthe results of the aeroelasticsensitivityanal-
ysis. In Fig. 2 the � utter speed is depicted as function of three elas-
tic parameters assumed as design variables: bending stiffness E I
with constant torsional stiffness, torsional stiffness G J with con-
stant bending stiffness, and both torsional and bending stiffness
keeping constant the stiffness ratio. All of these stiffness variations
are global, that is, obtained by keeping the same function struc-
ture with respect to the spanwise direction and multiplying it for
1 ¡ reduction %/100. The results shown in Fig. 2 are obtained by
neglecting the in� uence of the engine nacelle and considering the
fuel presence (only for mass distribution). In Fig. 2 the markers rep-
resent the � utter speed valuesas obtainedby an aeroelasticanalysis,
whereas the three straight lines are the tangent lines to the curves
correspondingto the symbols.The tangencypointsare, respectively,
1% for the upper curve, 15% for the middle curve, and 20% for the
lowercurve;they were obtainedby the sensitivityanalysispresented
earlier.Note that the strongest � utter-speeddecreasecorrespondsto
the reduction in torsional stiffness. In Fig. 3 the sensitivity to the
fuel mass variationis estimatedwith and without the enginenacelle.
Furthermore, the tangent lines obtained by the sensitivity analysis
are also depicted.

Fig. 2 Flutter-speed sensitivity to stiffness variations (no nacelles, with
fuel): tangency points xt = 0% (data ), xt = 15% (data ¦ ), and xt = 20%
(data +).

Fig. 3 Flutter-speed sensitivity to fuel–massvariation:tangencypoints
xt = 0.4.
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Fig. 4 Flutter-speed sensitivity to engine-mass variation (without
fuel): tangency points xt = 7.5 (1000 kg).

Fig. 5 Flutter-speed sensitivity to engine–mass variation (with fuel):
tangency points xt = 5 (1000 kg).

In Figs. 4 and 5 the in� uence of the engine weight with and
without fuel, respectively, is shown. The aerodynamic in� uence of
the nacelles seems to lower the � utter speed but, increasing the
total engine weight, a stabilizing in� uence is apparent in absence
of fuel (Fig. 4). Again, the tangent lines are obtained as shown in
the preceding � gures. In Figs. 6 and 7 the in� uence of the engine
streamwise location with and without fuel, respectively, is consid-
ered. The global effect of the nacelles is the same as in the earlier
cases. The estimates of the � utter derivatives are obtained also in
this case by considering the mass matrix variations and avoiding
the aerodynamicmatrix variations.Similar resultswere obtainedby
Balis Crema et al.19 for the in� uence of the engine vertical position
and the ratio between the nacelle diameter and length D / L . In both
the cases the � utter speed appeared to be poorly sensitive to these
variations although the calculated sensitivities were quite accurate.

Next, the results of the gust sensitivity analysis are discussed.
Figure 8 shows a discrete (1 ¡ cos) gust input as function of time
together with the corresponding matched input with the same en-
ergy ex , but in such a way as to maximize the acceleration out-
put. The � rst input is one of those required by the international
authorities,22 and it corresponds to a maximum vertical gust ve-
locity Ug =15 m/s and a gust gradient distance equal to 25 times
the mean chord. Figure 9 depicts the two corresponding outputs as

Fig. 6 Flutter-speed sensitivity to streamwise engine position (without
fuel): tangency points xt = 0 m.

Fig. 7 Flutter-speed sensitivity to streamwise engine position (with
fuel): tangency points xt = 0 m.

Fig. 8 Energy-equivalent input for the gust response problem maxi-
mizing the acceleration of center of mass.
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Fig. 9 Gust response acceleration to the 1 ¡ cos input, to the energy-
equivalent matched input, and to the theoretically estimated maximum
value.

Fig. 10 Sensitivity of the maximum of the gust-response acceleration
to the fuel-mass variation: tangency point xt = 0.3.

obtained by MSC/NASTRAN and the value of the maximum peak
as estimated by Eq. (27). Note that this result suggests a simpler
and more conservative tool to test the extreme performances of an
aircraft for a prescribed energy level of the discrete gust. In Fig. 10
the estimated maximum values, as given by Eq. (27), are depicted
as function of the fuel fraction in the wing. The straight line is the
tangent line to the curve corresponding to the symbols. It has been
obtained by using Eqs. (28) and (29) without considering the con-
tributionsof the derivativesof the aerodynamicquantitiesE and Ew

with respect to the structural modi� cations. Actually, this approach
corresponds to neglect the second-ordermode shape variations6 in
the sensitivityanalysis.As is shown, the assumed hypothesisseems
to be quite acceptable.

In Fig. 11 the same kind of results are presented.The E I and G J
stiffnessesare assumedasdesignvariablesas in Fig. 2. Also, in these
cases the estimates of the sensitivityare quite acceptable. In Fig. 12
the same analysis, but consideringas output the dynamic loads [see
Eqs. (30) and (31)], is presented. The input is energy equivalent
to (1 ¡ cos) input (the same considered before) and it maximizes
the bending moment at the root of the wing. The results show that
such input gives an output exactly estimated by theory [Eq. (32)].
The same kind of results of Fig. 10 with respect to the same design
parameterhas beenobtainedin Fig. 13 for the root bendingmoment.

Fig. 11 Sensitivity of the maximum of the gust-response acceleration
to the EI stiffness, GJ stiffness, and simultaneous EI–GJ keeping EI/GJ
constant: tangency points xt = 0.1.

Fig. 12 Gust response of the root bending moment to the 1 ¡ cos in-
put, to the energy-equivalent matched input, and to the theoretically
estimated maximum value.

Fig. 13 Sensitivity of the root-bending-moment load to the fuel–mass
variation: tangency points xt = 0 and 0.5.
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Fig. 14 Sensitivity of plunge acceleration to the fuel-mass variation:
tangency points xt = 0.4.

Fig. 15 Sensitivity of plunge acceleration to the nacelle diameter vari-
ation: tangency points xt = 0 m.

Two sensitivity evaluations, the sensitivity of the root bending mo-
ment to the fuel mass variation by two tangent lines to the tangency
points xt = 0 and 0.5, are reported.Although the curve is not persis-
tently increasing or decreasing, the approximation of sensitivity as
obtained in point 0.5 by the simpli� ed version of Eqs. (30) and (34)
gives satisfactory results. The limits of the approximatedversionof
these equations have been investigated by the last set of sensitivity
analyses. In Figs. 14 and 15 the various contributions of structural
andaerodynamicvariationsarepresentedconsideringthe (structural
and aerodynamic) contribution of engines in the wing. In Fig. 14
the sensitivity of plunge acceleration to the fuel mass variation is
shown. In this case it is essential to take into account the full aero-
dynamic variations (i.e., either @E/@ a or @Ew /@ a ) to get the right
tangent line to the tangency point xt =0.4. Without @Ew /@ a the
dotted tangent line is obtained, whereas without any aerodynamic
contribution the wrong dashed–dotted tangent line is pointed out.
Finally, in Fig. 15 the sensitivity of plunge acceleration to the na-
celle diameter variation is presented. Again, the right sensitivity is
obtained considering all the aerodynamic contributions.

Conclusions
In the present paper, using the same basic formulation for the

structural dynamics (modal description) and for the unsteady aero-

dynamics (� nite state aerodynamics), several models for the aeroe-
lastic sensitivities in the stability and response problems have been
developed.The aim was to improve the accuracyof such derivatives
in the optimization process with respect to a numerical evaluation
via � nite differences that lead to a reanalysis in several design vari-
able points. An apparent advantage of this approach on the � utter
stability appears to be the sensitivity evaluationdirectly carried out
on the � utter speed (note that, in standardcodes, aeroelasticstability
constraintsare typicallyassignedby an admissible range on the real
part of the critical eigenvalue).

The effects of several structural-designvariables, such as global
mass and stiffness, fuel mass, and the position and dimension of
engines, on the aeroelastic analysis of an UHCA have been in-
vestigated. A low-frequency � utter occurs because of the coupling
between the � rst bending mode and the second torsional/bending
mode. The presence of fuel and of nacelle airload generally re-
duces the � utter speed; furthermore, the nacelle displacement in
the streamwisedirectionand the nacelle diameter may considerably
change the � utter speed.

The response analysis performed by MFT allows evaluation of
the maximum output.Thus, one could use this result for constrained
optimization taking into account the requirements of the appropri-
ate authorities on the discrete-gust response. Moreover, MFT and
the � nite state aerodynamics were the tools for evaluating analiti-
cally, via system matrix-transfer-function data, the maximum of the
gust response and the aeroelastic sensitivity given a level of input
energy. The results showed that the most signi� cant effects, in the
UHCA wing numerical tests, were due to the fuel mass changes.
The evaluations by simple formulas of the maximum peak value
and its sensitivitiesare based on the knowledgeof the system trans-
fer function and the prescribed gust-input energy level. This could
help designers in evaluating the maximum time response directly
in the frequency domain where the aeroelastic model is typically
de� ned. This result suggests a simpler and more conservative tool
to test the limit behavior of an aircraft given an energy level of a
discretegust. Furthermore, exact estimates of the sensitivitiesof the
maximum value with respect to design variables have been evalu-
ated consideringseveral levels of the aerodynamiccontributionand
the different results have been pointed out.

Appendix: MFT Properties
The time response to the input given by Eq. (21) is

y(m )
m (t ) =

1

2p *
+ 1

¡ 1
Hm x̃ (m)ei x t d x

=
1

2p j *
+ 1

¡ 1
Hm H ¤

mei x (t ¡ to ) d x (A1)

where the Eq. (22) has been used. As the function k Hm k = Hm H ¤
m

is a real and even function of x , Eq. (A1) yields

y(m )
m (t ) =

1
p j * + 1

0

Hm H ¤
m cos[x (t ¡ t0)]d x (A2)

As the function y (m )
m (t ) has a maximum at the time t = t0 equal to

y(m)
mmax

=
1

2 p j * + 1

¡ 1
Hm H ¤

m d x (A3)

Equation (A2) demonstrates that the maximum is reached for t = t0.
To clarify the meaning of the constant j , consider the identities

ehm = *
+ 1

¡ 1
h2

m(t ) dt =
1

2 p *
+ 1

¡ 1
Hm H ¤

m d x

=
j 2

2p *
+ 1

¡ 1
x̃ (m) x̃ (m) ¤

d x = j 2ex (m) (A4)
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Then, the meaning of the constant j is given by Eq. (23) and, con-
sidering the relationships (A3) and (23), one has

y (m )
mmax

= ! ex (m )

ehm

1

2p * + 1

¡ 1
Hm H ¤

m d x (A5)

Finally, expressing ehm by Eq. (A4) and considering the de� nition
of ex (m) , Eq. (A5) can be � nally reduced to Eq. (24).

Next, suppose that x(t ) is a general input signal with the same
input energy as the matched input x (m)(t ) [i.e., ex ´ ex (m ) ] that pro-
duces the mth output entry ym (t ). Considering Eqs. (22), (A2), and
(23) together with the Schwartz integral inequality, one has for the
output

k ym(t ) k 2 =
IIII !

ehm

ex (m)

1

2p *
+ 1

¡ 1
x̃ (m) ¤

x̃ei x ( t ¡ t0 ] d x
IIII

2

·
ehm

ex (m) [ 1

2 p * + 1

¡ 1
x̃ (m) ¤

x̃ (m) dx ][ 1

2 p * + 1

¡ 1
x̃ ¤ x̃ d x ]

·
ehm

ex (m) [ 1

2 p * + 1

¡ 1
x̃ (m) ¤

x̃ (m) dx ]
2

=
ehm

ex (m)

1
j 4 [ 1

2 p *
+ 1

¡ 1
Hm H ¤

m dx ]
2

= [y (m )
mmax]

2
(A6)

that demonstratesthat the maximum in time reachedby the response
given by the matched input is maximum (in absolute-value sense)
with respect to the maximum in time obtained by any other energy-
equivalent input.
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